1,069 research outputs found

    Self-doping processes between planes and chains in the metal-to-superconductor transition of YBa2Cu3O6.9

    Get PDF
    The interplay between the quasi 1-dimensional CuO-chains and the 2-dimensional CuO2 planes of YBa2Cu3O6+x (YBCO) has been in focus for a long time. Although the CuO-chains are known to be important as charge reservoirs that enable superconductivity for a range of oxygen doping levels in YBCO, the understanding of the dynamics of its temperature-driven metal-superconductor transition (MST) remains a challenge. We present a combined study using x-ray absorption spectroscopy and resonant inelastic x-ray scattering (RIXS) revealing how a reconstruction of the apical O(4)-derived interplanar orbitals during the MST of optimally doped YBCO leads to substantial hole-transfer from the chains into the planes, i.e. self-doping. Our ionic model calculations show that localized divalent charge-transfer configurations are expected to be abundant in the chains of YBCO. While these indeed appear in the RIXS spectra from YBCO in the normal, metallic, state, they are largely suppressed in the superconducting state and, instead, signatures of Cu trivalent charge-transfer configurations in the planes become enhanced. In the quest for understanding the fundamental mechanism for high-Tc-superconductivity (HTSC) in perovskite cuprate materials, the observation of such an interplanar self-doping process in YBCO opens a unique novel channel for studying the dynamics of HTSC.Comment: 9 pages, 4 Figure

    Resonant soft X-ray Raman scattering of NiO

    Full text link
    Resonant soft X-ray Raman scattering measurements on NiO have been made at photon energies across the Ni 2p absorption edges. The details of the spectral features are identified as Raman scattering due to d-d and charge-transfer excitations. The spectra are interpreted within the single impurity Anderson model, including multiplets, crystal-field and charge-transfer effects. At threshold excitation, the spectral features consists of triplet-triplet and triplet-singlet transitions of the 3d8 configuration. For excitation energies corresponding to the charge-transfer region in the Ni 2p X-ray absorption spectrum of NiO, the emission spectra are instead dominated by charge-transfer transitions to the 3d9L-1 final state. Comparisons of the final states with other spectroscopical techniques are also made.Comment: 9 pages, 2 figures, 2 tables, http://iopscience.iop.org/0953-8984/14/13/32

    Conditional inactivation of the Men1 gene leads to pancreatic and pituitary tumorigenesis but does not affect normal development of these tissues

    Get PDF
    Mutations of the MEN1 gene, encoding the tumor suppressor menin, predispose individuals to the cancer syndrome multiple endocrine neoplasia type 1, characterized by the development of tumors of the endocrine pancreas and anterior pituitary and parathyroid glands. We have targeted the murine Men1 gene by using Cre recombinase-loxP technology to develop both total and tissue-specific knockouts of the gene. Conditional homozygous inactivation of the Men1 gene in the pituitary gland and endocrine pancreas bypasses the embryonic lethality associated with a constitutional Men1(-/-) genotype and leads to beta-cell hyperplasia in less than 4 months and insulinomas and prolactinomas starting at 9 months. The pituitary gland and pancreas develop normally in the conditional absence of menin, but loss of this transcriptional cofactor is sufficient to cause beta-cell hyperplasia in some islets; however, such loss is not sufficient to initiate pituitary gland tumorigenesis, suggesting that additional genetic events are necessary for the latter

    Electronic structure of Co_xTiSe_2 and Cr_xTiSe_2

    Full text link
    The results of investigations of intercalated compounds Cr_xTiSe_2 and Co_xTiSe_2 by X-ray photoelectron spectroscopy (XPS) and X-ray emission spectroscopy (XES) are presented. The data obtained are compared with theoretical results of spin-polarized band structure calculations. A good agreement between theoretical and experimental data for the electronic structure of the investigated materials has been observed. The interplay between the M3d--Ti3d hybridization (M=Cr, Co) and the magnetic moment at the M site is discussed. A 0.9 eV large splitting of the core Cr2p{3/2} level was observed, which reveals a strong exchange magnetic interaction of 3d-2p electrons of Cr. In the case of a strong localization of the Cr3d electrons (for x<0.25), the broadening of the CrL spectra into the region of the states above the nominal Fermi level was observed and attributed to X-ray re-emission. The measured kinetic properties are in good accordance with spectral investigations and band calculation results.Comment: 14 pages, 11 figures, submitted to Phys.Rev.

    Resonant Auger spectroscopy at the L2,3 shake-up thresholds as a probe of electron correlation effects in nickel

    Full text link
    The excitation energy dependence of the three-hole satellites in the L3-M4,5M4,5 and L2-M4,5M4,5 Auger spectra of nickel metal has been measured using synchrotron radiation. The satellite behavior in the non-radiative emission spectra at the L3 and L2 thresholds is compared and the influence of the Coster-Kronig channel explored. The three-hole satellite intensity at the L3 Auger emission line reveals a peak structure at 5 eV above the L3 threshold attributed to resonant processes at the 2p53d9 shake-up threshold. This is discussed in connection with the 6-eV feature in the x-ray absorption spectrum.Comment: 8 pages, 4 figures; http://prb.aps.org/abstract/PRB/v58/i7/p3677_

    Mesoscale subduction at the Almeria-Oran front. Part 2: biophysical interactions.

    Get PDF
    This paper presents a detailed diagnostic analysis of hydrographic and current meter data from three, rapidly repeated, fine-scale surveys of the Almeria–Oran front. Instability of the frontal boundary, between surface waters of Atlantic and Mediterranean origin, is shown to provide a mechanism for significant heat transfer from the surface layers to the deep ocean in winter. The data were collected during the second observational phase of the EU funded OMEGA project on RRS Discovery cruise 224 during December 1996. High resolution hydrographic measurements using the towed undulating CTD vehicle, SeaSoar, traced the subduction of Mediterranean Surface Water across the Almeria–Oran front. This subduction is shown to result from a significant baroclinic component to the instability of the frontal jet. The Q-vector formulation of the omega equation is combined with a scale analysis to quantitatively diagnose vertical transport resulting from mesoscale ageostrophic circulation. The analyses are presented and discussed in the presence of satellite and airborne remotely sensed data; which provide the basis for a thorough and novel approach to the determination of observational error

    Neuroimaging Evidence of Major Morpho-Anatomical and Functional Abnormalities in the BTBR T+TF/J Mouse Model of Autism

    Get PDF
    BTBR T+tf/J (BTBR) mice display prominent behavioural deficits analogous to the defining symptoms of autism, a feature that has prompted a widespread use of the model in preclinical autism research. Because neuro-behavioural traits are described with respect to reference populations, multiple investigators have examined and described the behaviour of BTBR mice against that exhibited by C57BL/6J (B6), a mouse line characterised by high sociability and low self-grooming. In an attempt to probe the translational relevance of this comparison for autism research, we used Magnetic Resonance Imaging (MRI) to map in both strain multiple morpho-anatomical and functional neuroimaging readouts that have been extensively used in patient populations. Diffusion tensor tractography confirmed previous reports of callosal agenesis and lack of hippocampal commissure in BTBR mice, and revealed a concomitant rostro-caudal reorganisation of major cortical white matter bundles. Intact inter-hemispheric tracts were found in the anterior commissure, ventro-medial thalamus, and in a strain-specific white matter formation located above the third ventricle. BTBR also exhibited decreased fronto-cortical, occipital and thalamic gray matter volume and widespread reductions in cortical thickness with respect to control B6 mice. Foci of increased gray matter volume and thickness were observed in the medial prefrontal and insular cortex. Mapping of resting-state brain activity using cerebral blood volume weighted fMRI revealed reduced cortico-thalamic function together with foci of increased activity in the hypothalamus and dorsal hippocampus of BTBR mice. Collectively, our results show pronounced functional and structural abnormalities in the brain of BTBR mice with respect to control B6 mice. The large and widespread white and gray matter abnormalities observed do not appear to be representative of the neuroanatomical alterations typically observed in autistic patients. The presence of reduced fronto-cortical metabolism is of potential translational relevance, as this feature recapitulates previously-reported clinical observations

    Social approach in genetically engineered mouse lines relevant to autism

    Get PDF
    Profound impairment in social interaction is a core symptom of autism, a severe neurodevelopmental disorder. Deficits can include a lack of interest in social contact and low levels of approach and proximity to other children. In this study, a three-chambered choice task was used to evaluate sociability and social novelty preference in five lines of mice with mutations in genes implicated in autism spectrum disorders. Fmr1tm1Cgr/Y (Fmr1−/y) mice represent a model for fragile X, a mental retardation syndrome that is partially co-morbid with autism. We tested Fmr1−/y mice on two genetic backgrounds, C57BL/6J and FVB/N-129/OlaHsd (FVB/129). Targeted disruption of Fmr1 resulted in low sociability on one measure, but only when the mutation was expressed on FVB/129. Autism has been associated with altered serotonin levels and polymorphisms in SLC6A4 (SERT), the serotonin-transporter gene. Male mice with targeted disruption of Slc6a4 displayed significantly less sociability than wildtype controls. Mice with conditional overexpression of Igf-1 (Insulin-like growth factor-1) offered a model for brain overgrowth associated with autism. Igf-1 transgenic mice engaged in levels of social approach similar to wildtype controls. Targeted disruption in other genes of interest, En2 (Engrailed 2) and Dhcr7, was carried on genetic backgrounds that demonstrated low levels of exploration in the choice task, precluding meaningful interpretations of social behavior scores. Overall, results show that loss of Fmr1 or Slc6a4 gene function can lead to deficits in sociability. Findings from the fragile X-model suggest that the FVB/129 background confers enhanced susceptibility to consequences of Fmr1 mutation on social approach

    Social approach and repetitive behavior in eleven inbred mouse strains

    Get PDF
    Core symptoms of autism include deficits in social interaction, impaired communication, and restricted, repetitive behaviors. The repetitive behavior domain encompasses abnormal motoric stereotypy, an inflexible insistence on sameness, and resistance to change. In recent years, many genetic mouse models of autism and related disorders have been developed, based on candidate genes for disease susceptibility. The present studies are part of an ongoing initiative to develop appropriate behavioral tasks for the evaluation of mouse models relevant to autism. We have previously reported profiles for sociability, preference for social novelty, and resistance to changes in a learned pattern of behavior, as well as other functional domains, for 10 inbred mouse strains of divergent genetic backgrounds. The present studies extend this multi-component behavioral characterization to several additional strains: C58/J, NOD/LtJ, NZB/B1NJ, PL/J, SJL/J, SWR/J, and the wild-derived PERA/EiJ. C58/J, NOD/LtJ, NZB/B1NJ, SJL/J, and PERA/EiJ demonstrated low sociability, measured by time spent in proximity to an unfamiliar conspecific, with 30% to 60% of mice from these strains showing social avoidance. In the Morris water maze, NZB/B1NJ had a persistent bias for the quadrant where the hidden platform was located during acquisition, even after nine days of reversal training. A particularly interesting profile was found for C58/J, which had low social preference, poor performance in the T-maze, and overt motoric stereotypy. Overall, this set of tasks and observational methods provides a strategy for evaluating novel mouse models in behavioral domains relevant to the autism phenotype

    Large-Scale Gene Expression Differences Across Brain Regions and Inbred Strains Correlate With a Behavioral Phenotype

    Get PDF
    Behaviors are often highly heritable, polygenic traits. To investigate molecular mediators of behavior, we analyzed gene expression patterns across seven brain regions (amygdala, basal ganglia, cerebellum, frontal cortex, hippocampus, cingulate cortex, and olfactory bulb) of 10 different inbred mouse strains (129S1/SvImJ, A/J, AKR/J, BALB/cByJ, BTBR T+ tf/J, C3H/HeJ, C57BL/6J, C57L/J, DBA/2J, and FVB/NJ). Extensive variation was observed across both strain and brain region. These data provide potential transcriptional intermediates linking polygenic variation to differences in behavior. For example, mice from different strains had variable performance on the rotarod task, which correlated with the expression of >2000 transcripts in the cerebellum. Correlation with this task was also found in the amygdala and hippocampus, but not in other regions examined, indicating the potential complexity of motor coordination. Thus we can begin to identify expression profiles contributing to behavioral phenotypes through variation in gene expression
    • …
    corecore